

Deitel® Series Page
How To Program Series
Android How to Program
C How to Program, 7/E
C++ How to Program, 9/E
C++ How to Program, Late Objects Version, 7/E
Java™ How to Program, 9/E
Java™ How to Program, Late Objects Version, 8/E
Internet & World Wide Web How to Program, 5/E
Visual Basic® 2012 How to Program
Visual C#® 2012 How to Program, 5/E
Visual C++® 2008 How to Program, 2/E
Small Java™ How to Program, 6/E
Small C++ How to Program, 5/E

Simply Series
Simply C++: An App-Driven Tutorial Approach
Simply Java™ Programming: An App-Driven

Tutorial Approach
Simply Visual Basic® 2010, 4/E: An App-Driven

Tutorial Approach

CourseSmart Web Books
www.deitel.com/books/CourseSmart/

C++ How to Program, 7/E, 8/E & 9/E
Simply C++: An App-Driven Tutorial Approach
Java™ How to Program, 7/E, 8/E & 9/E

Simply Visual Basic 2010: An App-Driven
Approach, 4/E

Visual Basic® 2012 How to Program
Visual Basic® 2010 How to Program
Visual C#® 2012 How to Program, 5/E
Visual C#® 2010 How to Program, 4/E

Deitel® Developer Series
C++ for Programmers, 2/E
Android for Programmers: An App-Driven

Approach
C# 2010 for Programmers, 3/E
Dive Into® iOS 6: An App-Driven Approach
iOS 6 for Programmers: An App-Driven Approach
Java™ for Programmers, 2/E
JavaScript for Programmers

LiveLessons Video Learning Products
www.deitel.com/books/LiveLessons/

Android® App Development Fundamentals
C++ Fundamentals
C# Fundamentals
iOS 6 App Development Fundamentals
Java™ Fundamentals
JavaScript Fundamentals
Visual Basic® Fundamentals

To receive updates on Deitel publications, Resource Centers, training courses, partner offers and
more, please register for the free Deitel® Buzz Online e-mail newsletter at:

www.deitel.com/newsletter/subscribe.html

and join the Deitel communities on Twitter®

@deitel

Facebook®

facebook.com/DeitelFan

and Google+
gplus.to/deitel

To communicate with the authors, send e-mail to:
deitel@deitel.com

For information on government and corporate Dive-Into® Series on-site seminars offered by Deitel
& Associates, Inc. worldwide, visit:

www.deitel.com/training/

or write to
deitel@deitel.com

For continuing updates on Prentice Hall/Deitel publications visit:
www.deitel.com
www.pearsonhighered.com/deitel/

Visit the Deitel Resource Centers that will help you master programming languages, software devel-
opment, Android and iPhone/iPad app development, and Internet- and web-related topics:

www.deitel.com/ResourceCenters.html

www.deitel.com/books/CourseSmart/
www.deitel.com/books/LiveLessons/
www.deitel.com/newsletter/subscribe.html
www.deitel.com/training/
www.deitel.com
www.pearsonhighered.com/deitel/
www.deitel.com/ResourceCenters.html

Paul Deitel
Deitel & Associates, Inc.

Abbey Deitel
Deitel & Associates, Inc.

Harvey Deitel
Deitel & Associates, Inc.

Vice President and Editorial Director: Marcia J. Horton
Executive Editor: Tracy Johnson
Associate Editor: Carole Snyder
Director of Marketing: Christy Lesko
Marketing Manager: Yezan Alayan
Marketing Assistant: Jon Bryant
Director of Production: Erin Gregg
Managing Editor: Scott Disanno
Associate Managing Editor: Robert Engelhardt
Operations Specialist: Lisa McDowell
Art Director: Anthony Gemmellaro
Cover Design: Abbey S. Deitel, Harvey M. Deitel, Anthony Gemmellaro
Cover Photo Credit: © Shutterstock/Pati Photo
Media Project Manager: Renata Butera

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear
on page vi.

The authors and publisher of this book have used their best efforts in preparing this book. These efforts include the
development, research, and testing of the theories and programs to determine their effectiveness. The authors and pub-
lisher make no warranty of any kind, expressed or implied, with regard to these programs or to the documentation
contained in this book. The authors and publisher shall not be liable in any event for incidental or consequential dam-
ages in connection with, or arising out of, the furnishing, performance, or use of these programs.

Copyright © 2014, 2011, 2009 Pearson Education, Inc., publishing as Prentice Hall. All rights reserved. Manufac-
tured in the United States of America. This publication is protected by Copyright, and permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or
by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to use material
from this work, please submit a written request to Pearson Education, Inc., One Lake Street, Upper Saddle River, New
Jersey 07458, or you may fax your request to 201-236-3290.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been
printed in initial caps or all caps.

Microsoft and/or its respective suppliers make no representations about the suitability of the information contained in
the documents and related graphics published as part of the services for any purpose. All such documents and related
graphics are provided “as is” without warranty of any kind. Microsoft and/or its respective suppliers hereby disclaim
all warranties and conditions with regard to this information, including all warranties and conditions of merchant-
ability, whether express, implied or statutory, fitness for a particular purpose, title and non-infringement. In no event
shall Microsoft and/or its respective suppliers be liable for any special, indirect or consequential damages or any dam-
ages whatsoever resulting from loss of use, data or profits, whether in an action of contract, negligence or other tortious
action, arising out of or in connection with the use or performance of information available from the services.

The documents and related graphics contained herein could include technical inaccuracies or typographical errors.
Changes are periodically added to the information herein. Microsoft and/or its respective suppliers may make improve-
ments and/or changes in the product(s) and/or the program(s) described herein at any time. Partial screen shots may
be viewed in full within the software version specified.

Library of Congress Cataloging-in-Publication Data on file.

10 9 8 7 6 5 4 3 2 1

ISBN-10: 0-13-340695-4

ISBN-13: 978-0-13-340695-5

To the Microsoft Visual Basic Language Team

Paul, Abbey and Harvey Deitel

Trademarks
DEITEL, the double-thumbs-up bug and DIVE INTO are registered trademarks of Deitel and Associates,
Inc.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and
other countries. This book is not sponsored or endorsed by or affiliated with the Microsoft Corporation.

UNIX is a registered trademark of The Open Group.

Throughout this book, trademarks are used. Rather than put a trademark symbol in every occurrence of
a trademarked name, we state that we are using the names in an editorial fashion only and to the benefit
of the trademark owner, with no intention of infringement of the trademark.

Chapters 16–31 are PDF documents posted online at the book’s Companion Website
(located at www.pearsonhighered.com/deitel/).

Preface xix
Before You Begin xxix
1 Introduction to Computers, the Internet and

Visual Basic 1
2 Dive Into® Visual Studio Express 2012 for

Windows Desktop 26
3 Introduction to Visual Basic Programming 59
4 Introduction to Problem Solving and

Control Statements 101
5 Problem Solving and Control Statements:

Part 2 146
6 Methods 188
7 Arrays 238
8 Files 286
9 Object-Oriented Programming:

Classes and Objects 312
10 Object-Oriented Programming:

Inheritance and Polymorphism 352
11 Introduction to LINQ 382
12 Databases and LINQ 399
13 Web App Development with ASP.NET 446
14 Windows Forms GUI: A Deeper Look 498
15 Graphics and Multimedia 554

Brief Contents

vbhtp6TOCbrief.fm Page vii Monday, February 11, 2013 9:40 AM

www.pearsonhighered.com/deitel/

viii Brief Contents

Online Chapters 597
A Operator Precedence Chart 598
B Primitive Types 600
C Number Systems 601
D ASCII Character Set 613
E Unicode® 614
F Creating Console Applications 625
Index 629

Companion Website Online Content
Chapters 16–31 and Appendix F are PDF documents posted online at the book’s Com-
panion Website (located at www.pearsonhighered.com/deitel).

16 Exception Handling: A Deeper Look 16-1
17 Strings and Characters: A Deeper Look 17-1
18 Files and Streams: A Deeper Look 18-1
19 XML and LINQ to XML 19-1
20 Windows 8 UI 20-1
21 Windows 8 Graphics and Multimedia 21-1
22 Windows Phone 8 Case Study 22-1
23 Introduction to Concurrency:

Async and Await 23-1
24 Web App Development with ASP.NET:

A Deeper Look 24-1
25 Web Services 25-1
26 Windows Azure™ Cloud Computing Case Study 26-1
27 Windows Presentation Foundation (WPF) GUI 27-1
28 WPF Graphics and Multimedia 28-1
29 Data Structures and Generic Collections 29-1
30 ATM Case Study, Part 1:

Object-Oriented Design with the UML 30-1
31 ATM Case Study, Part 2:

Implementing an Object-Oriented Design 31-1

www.pearsonhighered.com/deitel

Chapters 16–31 are PDF documents posted online at the book’s Companion Website
(located at www.pearsonhighered.com/deitel/).

Preface xvii

Before You Begin xxxi

1 Introduction to Computers, the Internet and
Visual Basic 1

1.1 Introduction 2
1.2 Hardware and Moore’s Law 2
1.3 Data Hierarchy 3
1.4 Computer Organization 5
1.5 Machine Languages, Assembly Languages and High-Level Languages 7
1.6 Object Technology 8
1.7 Internet and World Wide Web 10
1.8 Visual Basic 11

1.8.1 Object-Oriented Programming 12
1.8.2 Event-Driven Programming 12
1.8.3 Visual Programming 12
1.8.4 Internet and Web Programming 13
1.8.5 Other Key Contemporary Programming Languages 13

1.9 Microsoft’s .NET 14
1.9.1 .NET Framework 14
1.9.2 Common Language Runtime 14

1.10 Microsoft’s Windows® Operating System 14
1.11 Windows Phone 8 for Smartphones 16

1.11.1 Selling Your Apps in the Windows Phone Marketplace 16
1.11.2 Free vs. Paid Apps 16
1.11.3 Testing Your Windows Phone Apps 17

1.12 Windows Azure™ and Cloud Computing 17
1.13 Visual Studio Integrated Development Environment 17
1.14 Test-Driving the Visual Basic Advanced Painter App in Visual Studio 2012 18

2 Dive Into® Visual Studio Express 2012 for
Windows Desktop 26

2.1 Introduction 27

Contents

www.pearsonhighered.com/deitel/

x Contents

2.2 Overview of the Visual Studio 2012 IDE 27
2.3 Menu Bar and Toolbar 32
2.4 Navigating the Visual Studio IDE 35

2.4.1 Solution Explorer 37
2.4.2 Toolbox 38
2.4.3 Properties Window 39

2.5 Using Help 40
2.6 Using Visual App Development to Create a Simple App that

Displays Text and an Image 41
2.7 Wrap-Up 51
2.8 Web Resources 51

3 Introduction to Visual Basic Programming 59
3.1 Introduction 60
3.2 Programmatically Displaying Text in a Label 61

3.2.1 Analyzing the Program 62
3.2.2 Modifying ASimpleApp to Programmatically Change the

Label’s Text Property 64
3.3 Addition Program 68
3.4 Building the Addition Program 71
3.5 Memory Concepts 78
3.6 Arithmetic 79
3.7 Decision Making: Equality and Relational Operators 83
3.8 Wrap-Up 88

4 Introduction to Problem Solving and
Control Statements 101

4.1 Introduction 102
4.2 Algorithms 102
4.3 Pseudocode Algorithm 103
4.4 Control Structures 103
4.5 If…Then Selection Statement 106
4.6 If…Then…Else Selection Statement 107
4.7 Nested If…Then…Else Selection Statements 108
4.8 Repetition Statements 109
4.9 Compound Assignment Operators 111
4.10 Formulating Algorithms: Counter-Controlled Repetition 113
4.11 Formulating Algorithms: Nested Control Statements 119
4.12 Using the Debugger: Locating a Logic Error 125

4.12.1 Breakpoints and Running the Program 127
4.12.2 Data Tip Box 128
4.12.3 Locals Window 128
4.12.4 Using the Step Over Command to Execute Statements 129

4.13 Wrap-Up 130

Contents xi

5 Problem Solving and Control Statements: Part 2 146
5.1 Introduction 147
5.2 For…Next Repetition Statement 147

5.2.1 For…Next Statement Header Components 149
5.2.2 General Form of a For…Next Statement 149
5.2.3 Declaring the Control Variable Before a For…Next Statement 150
5.2.4 Using Expressions in the For…Next Statement’s Header 150
5.2.5 For…Next Statement UML Activity Diagram 150
5.2.6 Local Type Inference 150

5.3 Examples Using the For…Next Statement 152
5.4 App: Interest Calculator 152
5.5 Formulating Algorithms: Nested Repetition Statements 156
5.6 Select…Case Multiple-Selection Statement 159
5.7 Do…Loop While and Do…Loop Until Repetition Statements 164
5.8 Using Exit to Terminate Repetition Statements 165
5.9 Using Continue in Repetition Statements 166
5.10 Logical Operators 166
5.11 App: Dental Payment Calculator 169
5.12 Wrap-Up 173

6 Methods 188
6.1 Introduction 189
6.2 Classes and Methods 189
6.3 Subroutines: Methods That Do Not Return a Value 191
6.4 Functions: Methods That Return a Value 195
6.5 Implicit Argument Conversions 197
6.6 Option Strict and Data-Type Conversions 198
6.7 Passing Arguments: Pass-by-Value vs. Pass-by-Reference 200
6.8 Scope of Declarations 203
6.9 Case Study: Random-Number Generation 206

6.9.1 Scaling and Shifting of Random Numbers 208
6.9.2 Randomly Selecting Images 209
6.9.3 Rolling Dice Repeatedly and Displaying Statistics 211

6.10 Case Study: A Game of Chance 213
6.11 Method Overloading 218
6.12 Optional Parameters 220
6.13 Using the Debugger: Debugging Commands 223
6.14 Wrap-Up 224

7 Arrays 238
7.1 Introduction 239
7.2 Arrays 239
7.3 Declaring and Allocating Arrays 240
7.4 Initializing the Values in an Array 241
7.5 Summing the Elements of an Array 242

xii Contents

7.6 Using Arrays to Analyze Survey Results 243
7.7 Die-Rolling App with an Array of Counters 246
7.8 Case Study: Flag Quiz 248
7.9 Passing an Array to a Method 252
7.10 For Each…Next Repetition Statement 255
7.11 Sorting an Array with Method Sort of Class Array 257
7.12 Searching an Array with Linear Search 259
7.13 Searching a Sorted Array with Array Method BinarySearch 261
7.14 Rectangular Arrays 262
7.15 Case Study: Maintaining Grades Using a Rectangular Array 264
7.16 Resizing an Array with the ReDim Statement 274
7.17 Wrap-Up 275

8 Files 286
8.1 Introduction 287
8.2 Data Hierarchy 287
8.3 Files and Streams 289
8.4 Test-Driving the Credit Inquiry App 290
8.5 Writing Data Sequentially to a Text File 292

8.5.1 Class CreateAccounts 295
8.5.2 Opening the File 296
8.5.3 Managing Resources with the Using Statement 297
8.5.4 Adding an Account to the File 298
8.5.5 Closing the File and Terminating the App 299

8.6 Building Menus with the Windows Forms Designer 300
8.7 Credit Inquiry App: Reading Data Sequentially from a Text File 302

8.7.1 Implementing the Credit Inquiry App 302
8.7.2 Selecting the File to Process 302
8.7.3 Specifying the Type of Records to Display 303
8.7.4 Displaying the Records 304

8.8 Wrap-Up 307

9 Object-Oriented Programming:
Classes and Objects 312

9.1 Introduction 313
9.2 Classes, Objects, Methods and Instance Variables 313
9.3 Account Class 314
9.4 Value Types and Reference Types 320
9.5 Case Study: Card Shuffling and Dealing Simulation 321
9.6 Case Study: Time Class 327
9.7 Class Scope 334
9.8 Object Initializers 335
9.9 Auto-Implemented Properties 335
9.10 Using Me to Access the Current Object 336
9.11 Garbage Collection 336

Contents xiii

9.12 Shared Class Members 337
9.13 Const and ReadOnly Fields 340
9.14 Shared Methods and Class Math 341
9.15 Object Browser 342
9.16 Wrap-Up 342

10 Object-Oriented Programming:
Inheritance and Polymorphism 352

10.1 Introduction 353
10.2 Base Classes and Derived Classes 353
10.3 Business Case Study: Commission Employees Class Hierarchy 355

10.3.1 Creating Base Class CommissionEmployee 355
10.3.2 Creating Derived Class BasePlusCommissionEmployee 358
10.3.3 Testing Class BasePlusCommissionEmployee 361

10.4 Constructors in Derived Classes 363
10.5 Protected Members 363
10.6 Introduction to Polymorphism: A Polymorphic Video Game 364
10.7 Abstract Classes and Methods 365
10.8 Case Study: Payroll System Class Hierarchy Using Polymorphism 366

10.8.1 Abstract Base Class Employee 367
10.8.2 Concrete Derived Class SalariedEmployee 369
10.8.3 Concrete Derived Class CommissionEmployee 370
10.8.4 Indirect Concrete Derived Class BasePlusCommissionEmployee 372
10.8.5 Demonstrating Polymorphic Processing 373

10.9 Online Case Study: Interfaces 375
10.10 Wrap-Up 376

11 Introduction to LINQ 382
11.1 Introduction 383
11.2 Querying an Array of Primitive-Type Elements Using LINQ 384
11.3 Querying an Array of Reference-Type Elements Using LINQ 387
11.4 Deferred Execution and Transforming Query Results 393
11.5 LINQ Resource Center 394
11.6 Wrap-Up 395

12 Databases and LINQ 399
12.1 Introduction 400
12.2 Relational Databases 401
12.3 A Books Database 402
12.4 LINQ to Entities and the ADO.NET Entity Framework 406
12.5 Querying a Database with LINQ 407

12.5.1 Creating the ADO.NET Entity Data Model Class Library 408
12.5.2 Creating a Windows Forms Project and Configuring It to

Use the Entity Data Model 412

xiv Contents

12.5.3 Data Bindings Between Controls and the Entity Data Model 414
12.6 Dynamically Binding Query Results 419

12.6.1 Creating the Display Query Results GUI 420
12.6.2 Coding the Display Query Results App 421

12.7 Retrieving Data from Multiple Tables with LINQ 423
12.8 Creating a Master/Detail View App 428

12.8.1 Creating the Master/Detail GUI 429
12.8.2 Coding the Master/Detail App 431

12.9 Address Book Case Study 432
12.9.1 Creating the Address Book App’s GUI 433
12.9.2 Coding the Address Book App 434

12.10 Tools and Web Resources 438
12.11 Wrap-Up 438

13 Web App Development with ASP.NET 446
13.1 Introduction 447
13.2 Web Basics 448
13.3 Multitier App Architecture 449
13.4 Your First Web App 451

13.4.1 Building the WebTime App 453
13.4.2 Examining WebTime.aspx’s Code-Behind File 462

13.5 Standard Web Controls: Designing a Form 462
13.6 Validation Controls 467
13.7 Session Tracking 473

13.7.1 Cookies 475
13.7.2 Session Tracking with HttpSessionState 475
13.7.3 Options.aspx: Selecting a Programming Language 477
13.7.4 Recommendations.aspx: Displaying Recommendations Based

on Session Values 481
13.8 Case Study: Database-Driven ASP.NET Guestbook 482

13.8.1 Building a Web Form that Displays Data from a Database 484
13.8.2 Modifying the Code-Behind File for the Guestbook App 489

13.9 Online Case Study: ASP.NET AJAX 490
13.10 Online Case Study: Password-Protected Books Database App 491
13.11 Wrap-Up 491

14 Windows Forms GUI: A Deeper Look 498
14.1 Introduction 499
14.2 Controls and Components 499
14.3 Creating Event Handlers 501
14.4 Control Properties and Layout 503
14.5 GroupBoxes and Panels 506
14.6 ToolTips 508
14.7 Mouse-Event Handling 510
14.8 Keyboard-Event Handling 513

Contents xv

14.9 Menus 516
14.10 MonthCalendar Control 525
14.11 DateTimePicker Control 526
14.12 LinkLabel Control 529
14.13 ListBox and CheckedListBox Controls 531
14.14 Multiple Document Interface (MDI) Windows 535
14.15 Visual Inheritance 543
14.16 Animation with the Timer Component 546
14.17 Wrap-Up 547

15 Graphics and Multimedia 554
15.1 Introduction 555
15.2 Drawing Classes and the Coordinate System 555
15.3 Graphics Contexts and Graphics Objects 556
15.4 Colors 557
15.5 Fonts 564
15.6 Drawing Lines, Rectangles and Ovals 568
15.7 Drawing Arcs 571
15.8 Drawing Polygons and Polylines 574
15.9 Additional Brush Types 575
15.10 Loading, Displaying and Scaling Images 580
15.11 Windows Media Player 582
15.12 Printing 583
15.13 Wrap-Up 589

Online Chapters 597

A Operator Precedence Chart 598

B Primitive Types 600

C Number Systems 601
C.1 Introduction 602
C.2 Abbreviating Binary Numbers as Octal and Hexadecimal Numbers 605
C.3 Converting Octal and Hexadecimal Numbers to Binary Numbers 606
C.4 Converting from Binary, Octal or Hexadecimal to Decimal 606
C.5 Converting from Decimal to Binary, Octal or Hexadecimal 607
C.6 Negative Binary Numbers: Two’s-Complement Notation 609

D ASCII Character Set 613

E Unicode® 614
E.1 Introduction 615

xvi Contents

E.2 Unicode Transformation Formats 616
E.3 Characters and Glyphs 617
E.4 Advantages/Disadvantages of Unicode 618
E.5 Using Unicode 618
E.6 Character Ranges 620

F Creating Console Applications 625
F.1 Introduction 625
F.2 A Simple Console Application 625
F.3 Creating a Console Application 626

Index 629

Companion Website Online Content
Chapters 16–31 and Appendix F are PDF documents posted online at the book’s Com-
panion Website (located at www.pearsonhighered.com/deitel).

16 Exception Handling: A Deeper Look 16-1
17 Strings and Characters: A Deeper Look 17-1
18 Files and Streams: A Deeper Look 18-1
19 XML and LINQ to XML 19-1
20 Windows 8 UI 20-1
21 Windows 8 Graphics and Multimedia 21-1
22 Windows Phone 8 Case Study 22-1
23 Introduction to Concurrency:

Async and Await 23-1
24 Web App Development with ASP.NET:

A Deeper Look 24-1
25 Web Services 25-1
26 Windows Azure™ Cloud Computing Case Study 26-1
27 Windows Presentation Foundation (WPF) GUI 27-1
28 WPF Graphics and Multimedia 28-1
29 Data Structures and Generic Collections 29-1
30 ATM Case Study, Part 1:

Object-Oriented Design with the UML 30-1
31 ATM Case Study, Part 2:

Implementing an Object-Oriented Design 31-1

www.pearsonhighered.com/deitel

Welcome to the Visual Basic® 2012 computer programming language and the world of
Microsoft® Windows® and Internet and web programming with Microsoft’s .NET plat-
form. Please read the book’s back cover and inside back cover—these concisely capture the
book’s essence. In this Preface we provide more details.

This book is appropriate for information technology and business students in novice-
level and intermediate-level Visual Basic courses. The book is also used by professional
programmers.

At the heart of the book is the Deitel signature live-code approach—rather than using
code snippets, we present concepts in the context of complete working programs followed
by sample executions. Read the Before You Begin section after this Preface for instructions
on setting up your computer to run the code examples. The source code is available at
www.deitel.com/books/vb2012htp and www.pearsonhighered.com/deitel. Use the
source code we provide to compile and run each program as you study it—this will help you
master Visual Basic and related Microsoft technologies faster and at a deeper level.

We believe that this book and its supplements for students and instructors will give
you an informative, engaging, challenging and entertaining introduction to Visual Basic.
If you have questions, we’re easy to reach at deitel@deitel.com—we’ll respond
promptly. For book updates, visit www.deitel.com/books/vb2012htp, join our social
media communities on Facebook (www.deitel.com/DeitelFan), Twitter (@deitel),
Google+ (gplus.to/deitel) and LinkedIn (bit.ly/DeitelLinkedIn), and subscribe to
the Deitel® Buzz Online newsletter (www.deitel.com/newsletter/subscribe.html).

Visual Basic® 2012, the Visual Studio® 2012 IDE, .NET 4.5,
Windows® 7 and Windows® 8
The new Visual Basic 2012 and its associated technologies motivated us to write Visual
Basic 2012 How to Program. These are some of the key features of this new edition:

• Use with Windows 7, Windows 8 or both. The book is designed so that you can
continue to use Windows 7 now and begin to evolve to Windows 8, if you like, or
you can move right to Windows 8. All of the code examples in Chapters 1–19 and
23–31 were tested on both Windows 7 and Windows 8. The code examples for the
Windows-8-specific chapters—Chapter 20 (Windows 8 UI and XAML),
Chapter 21 (Windows 8 Graphics and Multimedia) and Chapter 22 (Building a
Windows Phone 8 App)—were tested only on Windows 8.

• Modular multi-GUI treatment with Windows Forms, Windows 8 UI and WPF.
The printed book features Windows Forms GUI; optional online chapters contain
treatments of WPF GUI and the new Windows 8 UI. Windows 8 UI apps are

Preface

www.deitel.com/books/vb2012htp
www.pearsonhighered.com/deitel
www.deitel.com/books/vb2012htp
www.deitel.com/DeitelFan
www.deitel.com/newsletter/subscribe.html

xviii Preface

called Windows Store apps. In Chapter 20, you’ll learn how to create and test Win-
dows Store apps and upload them to Microsoft’s Windows Store.

• Modular treatment of graphics and multimedia with Windows 8 and WPF. The
book features optional online chapters on both Windows 8 Graphics and Multime-
dia (Chapter 21) and WPF Graphics and Multimedia (Chapter 28).

• Database with LINQ to Entities. In the previous edition of this book, we discussed
LINQ (Language Integrated Query) to SQL (Microsoft’s SQL Server database sys-
tem). Microsoft stopped further development on LINQ to SQL in 2008 in favor
of the newer and more robust LINQ to Entities and the ADO.NET Entity Frame-
work, which we’ve switched to in this edition, keeping the discussion friendly for
novices.

• SQL Server database. We use Microsoft’s free SQL Server Express 2012 (which in-
stalls with the free Visual Studio Express 2012 for Windows Desktop) to present
the fundamentals of database programming. Chapters 12–13 and online Chapters
24–25 use database and LINQ capabilities to build an address-book desktop app,
a web-based guestbook app, a bookstore app and an airline reservation system app.

• ASP.NET 4.5. Microsoft’s .NET server-side technology, ASP.NET, enables you to
create robust, scalable web-based apps. In Chapter 13, you’ll build several apps, in-
cluding a web-based guestbook that uses ASP.NET and the ADO.NET Entity
Framework to store data in a database and display data in a web page. The chapter
also discusses the IIS Express web server for testing your web apps on your local
computer.

• Building a Windows Phone 8 App. Windows Phone 8 is Microsoft’s latest operat-
ing system for smartphones. It features multi-touch support for touchpads and
touchscreen devices, enhanced security features and more. In online Chapter 22,
you’ll build a complete working Windows Phone 8 app and test it on the Windows
Phone simulator; we’ll discuss how to upload apps to the Windows Phone Store.

• Building a Windows Azure™ Cloud Computing App. Windows Azure is a cloud
computing platform that allows you to develop, manage and distribute your apps
in the cloud. Online Chapter 26 shows you how to build a Windows Azure app
that can store data in the cloud.

• Asynchronous programming with async and await. Asynchronous programming is
simplified in Visual Basic 2012 with the new Async and Await capabilities. We in-
troduce asynchronous programming with Async and Await in online Chapter 23.

Object-Oriented Programming
• Late objects approach. We defer the discussion of creating custom classes until

Chapter 9, but in the early chapters, we still use lots of existing objects. Chapter 10
discusses how to create powerful new classes quickly by using inheritance to “ab-
sorb” the capabilities of existing classes, and presents the crucial concepts of poly-
morphism, abstract classes and interfaces.

• Rich coverage of programming fundamentals. Chapters 4 and 5 present a friendly
treatment of control statements and problem solving.

Interesting, Entertaining and Challenging Exercises xix

• A clear, example-driven presentation of classes, objects, inheritance, polymor-
phism and interfaces.

• Optional case study: Using the UML to develop an object-oriented design and Vi-
sual Basic implementation of an Automated Teller Machine (ATM). The UML™
(Unified Modeling Language™) is the industry-standard graphical language for
modeling object-oriented systems. We introduce the UML in the early chapters.
Optional online Chapters 30 and 31 include an optional case study on object-ori-
ented design using the UML. We design and implement the software for a simple
automated teller machine. We analyze a typical requirements document that specifies
the system to be built. We determine the classes needed to implement that system,
the attributes the classes need to have, the behaviors the classes need to exhibit and
we specify how the classes must interact with one another to meet the system re-
quirements. From the design we produce a complete working Visual Basic imple-
mentation. Students often report a “light bulb moment”—the case study helps
them “tie it all together” and truly understand object orientation.

• Three programming paradigms. We discuss structured programming, object-oriented
programming and generic programming.

Interesting, Entertaining and Challenging Exercises
• Extensive self-review exercises and answers are included for self-study.

• Many chapters include a multiple-choice Quick Quiz.

• Each chapter concludes with a substantial set of exercises, which generally includes
simple recall of important terminology and concepts, identifying the errors in code
samples, writing individual program statements, writing small portions of Visual
Basic classes, writing complete programs and implementing major projects.
Figure 1 lists a small sampling of the book’s hundreds of exercises, including selec-
tions from our Making a Difference exercises set, which encourage you to use com-
puters and the Internet to research and solve significant social problems—we hope
you’ll approach these exercises with your own values, politics and beliefs.

Exercises

Abstract Methods
Account Information App
Account Inheritance Hierarchy
Airline Reservations system
Alarm Clock GUI
Arithmetic Calculator App
Array Sorting App
Average Calculator App
Baseball Database App
Blackjack Modification
Body Mass Index Calculator

Cafeteria Survey App
Calculator GUI
Carbon Footprint Calculator
Car-Pool Savings Calculator
Coin Tossing
Computer-Assisted Instruction:

Reducing Student Fatigue
Computerization of Health

Records
Concentric Circles
Credit Checker App

DateInformation Class
Diameter, Circumference and

Area
Digit Extraction
Displaying Tabular Data
Concantenating Strings
Duplicate Elimination
Duplicate Word Removal
Employee Class
Enforcing Privacy with Cryp-

tography

Fig. 1 | A sampling of the book’s exercises. (Part 1 of 2.)

xx Preface

Other Features
• Illustrations and figures. Abundant tables, line drawings, UML diagrams, programs

and program outputs are included.

• Focus on business and personal utility examples.

• Windows Forms GUI is integrated throughout the core chapters. The core content
focuses on Windows Forms GUI apps.

• We use LINQ to query files, databases, XML and collections. The introductory
LINQ to Objects chapter (Chapter 11), is intentionally simple and brief to encour-
age instructors to begin covering LINQ technology early. We take a deeper look,
using LINQ to Entities (Chapters 12–13 and online Chapters 24–25) and LINQ
to XML (online Chapters 19, 25 and 26).

• Integrated Using the Debugger sections and exercises in the core printed book. Stu-
dents use the debugger to locate and fix logic errors.

• Strings, files and databases are covered early.

Enhanced Drawing App
Enhanced Exam Analysis App
Evaluating Poker Hands
Find the Smallest and Largest

Values
Gas Pump
Guess the Number App
Image Flasher
Image Reflector App
Inheritance Advantages
Invoice Class
Large-Type Displays for Peo-

ple with Low Vision
Lottery Number Generator
MDI Text Editor
Miles Per Gallon App
Modifying the Internal Data

Representation of a Class
Multiples
Notepad GUI
Nutrition Information XML

Document
Package Inheritance Hierarchy
Page Hit Counter
Parking Charges
Phone-Book Web Service
Pig Latin

Polling
Polymorphism and Extensibility
Present Value Calculator App
Protected vs. Private Access
Pyramid
Querying an Array of Invoice

Objects
Quiz Average App
Radio GUI
Random Lines
Reading Grades into a Two-

Dimensional Array
Retail Sales Calculator App
Road Sign Test App
Sales Commissions
Savings Account Class
Screen Saver App
Shape Hierarchy
Simple Calculator App
Simple Drawing App
Snake PolyLine App
Sorting and Ascending and

Descending Order
Speech-Controlled Drawing

App
Square Class
Student Inheritance Hierarchy

Table of Decimal, Octal,
Hexadecimal and Binary
Equivalents

Table of Powers App
Target-Heart-Rate Calculator
Tax Plan Alternatives; The

“Fair Tax”
Telephone-Number Word

Generator
Temperature Converter App
Triangles of Asterisks
Using the Debugger: Discount

Calculator App
Using the Debugger: Factorial

App
Using the Debugger: Savings

Calculator App
Using the Debugger: Sibling

Survey App
Vending Machine App
Wage Calculator with Tax

Calculations
Web-Based Address Book
World Population Growth
Writing a Grade Report to a

File

Exercises

Fig. 1 | A sampling of the book’s exercises. (Part 2 of 2.)

Companion Website xxi

• Introduction to Web app development with ASP.NET is in the core print book.

• Local type inference. When you initialize a local variable in its declaration, you can
omit the variable’s type—the compiler infers it from the initializer value.

• Object initializers. For new objects, you can use object initializer syntax (similar to
array initializer syntax) to assign values to the new object’s public properties and
public instance variables.

• We emphasize the IDE’s IntelliSense feature that helps you write code faster and
with fewer errors.

• Optional parameters. You can specify method parameters with default values—if
a corresponding method argument is not provided in the method call, the compiler
inserts the optional parameter’s default value in the call.

• “Quick Fix” window. We show how to use the IDE’s Error Correction Options
window to quickly fix certain common programming errors simply by clicking the
suggested fix, which is displayed in a window in the code editor.

• We show how to use DataTips and visualizers to view object contents in the code
window during debugging.

• Integrated exception handling. We introduce exception handling early (Chapter 7,
Arrays) to ensure that we do not access an array element outside the array’s bounds.
Chapter 9, Object-Oriented Programming: Classes and Objects, shows how to
indicate an exception when a member function receives an invalid argument. We
cover the complete details of exception handling in online Chapter 16, Exception
Handling: A Deeper Look.

• Visual Basic XML capabilities. Extensible Markup Language (XML) is pervasive in
the software-development industry, e-business and throughout the .NET platform.
In optional online Chapter 19, we introduce XML syntax and programmatically
manipulate the elements of an XML document using LINQ to XML. XAML is an
XML vocabulary that’s used to describe graphical user interfaces, graphics and mul-
timedia. We discuss XAML in optional online Chapters 20–21 and 27–28.

• Web app development with ASP.NET 4.5 and ASP.NET AJAX. Optional online
Chapter 24 extends Chapter 13’s ASP.NET discussion with a case study on build-
ing a password-protected, web-based bookstore app. We also introduce in
Chapter 24 ASP.NET AJAX controls and use them to add AJAX functionality to
web apps to give them a look and feel similar to that of desktop apps.

Companion Website
The printed book contains the core content (Chapters 1–15) for introductory course se-
quences. Several optional online chapters are available for advanced courses and profes-
sionals. Figure 2 lists the chapters that are available in searchable PDF format on the
book’s password-protected Companion Website at:

See the inside front cover of the book for an access code.

www.pearsonhighered.com/deitel

www.pearsonhighered.com/deitel

xxii Preface

VideoNotes
The Companion Website also includes extensive VideoNotes—watch and listen as co-
author Paul Deitel discusses key code examples in the core chapters of the book. Vide-
oNotes allow for self-paced instruction with easy navigation, including the ability to select,
play, rewind, fast-forward and stop within each video.

We’ve created a jump table that maps each VideoNote to the corresponding figures
in the book (www.deitel.com/books/vb2012htp/jump_table.pdf). VideoNotes are free
with the purchase of a new textbook. If you have a used book you can purchase access to
the VideoNotes for this book as follows:

1. Go to www.pearsonhighered.com/deitel/.

2. Scroll to Visual Basic 2012 How to Program and click Companion Website.

3. Click the Register button.

4. On the registration page, enter your student access code found beneath the
scratch-off panel on the inside front cover of this book. Do not type the dashes.
You can use lower- or uppercase. The access code can be used only once. This sub-
scription is valid for twelve months upon activation and is not transferable. If this
access code on your book has already been revealed, it may no longer be valid. If
this is the case, click the Website Purchase link and follow the instructions.

5. Once your personal Login Name and Password are confirmed, you can begin us-
ing the Visual Basic 2012 How to Program Companion Website.

Book Overview and Chapter Dependencies
This section discusses the book’s modular organization to help instructors plan their syllabi.

Online chapters

Chapter 16, Exception Handling: A Deeper
Look

Chapter 17, Strings and Characters: A Deeper
Look

Chapter 18, Files and Streams: A Deeper Look
Chapter 19, XML and LINQ to XML
Chapter 20, Windows 8 UI
Chapter 21, Windows 8 Graphics and

Multimedia
Chapter 22, Windows Phone 8 Case Study
Chapter 23, Introduction to Concurrency:

Async and Await

Chapter 24, Web App Development with
ASP.NET: A Deeper Look

Chapter 25, Web Services

Chapter 26, Building a Windows Azure Cloud
Computing App

Chapter 27, Windows Presentation Foundation
(WPF) GUI

Chapter 28, WPF Graphics and Multimedia
Chapter 29, Data Structures and Generic Col-

lections
Chapter 30, ATM Case Study, Part 1: Object-

Oriented Design with the UML
Chapter 31, ATM Case Study, Part 2: Imple-

menting an Object-Oriented Design
Index (The online index includes the content

from the printed book and the online con-
tent. The printed book index covers only the
printed material.)

Fig. 2 | Optional online chapters in Visual Basic 2012 How to Program.

www.deitel.com/books/vb2012htp/jump_table.pdf
www.pearsonhighered.com/deitel/

Book Overview and Chapter Dependencies xxiii

Introduction to Visual Basic and Visual Studio 2012 Express
Chapter 1, Introduction to Computers, the Internet and Visual Basic, introduces comput-
ing fundamentals and Microsoft’s .NET platform. If you do not need to cover these fun-
damentals, you should still cover the Painter app test-drive. The vast majority of the book’s
examples will run on Windows 7 and Windows 8 using Visual Studio Express 2012 for
Windows Desktop, which we test-drive in Section 1.14. Online Chapters 20–21 can be run
only on Windows 8 using Visual Studio Express 2012 for Windows 8. There are other ver-
sions of Visual Studio Express 2012 for web development and Windows Phone develop-
ment—we cover these in the corresponding chapters.

Chapter 2, Dive Into® Visual Studio Express 2012 for Windows Desktop, shows how
to develop a simple GUI app that displays text and an image. We’ll look at Visual Studio
Express 2012 for Windows 8 in more depth in online Chapter 20.

Introduction to Visual Basic Fundamentals
The chapters in this module of the book:

• Chapter 3, Introduction to Visual Basic Programming

• Chapter 4, Introduction to Problem Solving and Control Statements

• Chapter 5, Problem Solving and Control Statements: Part 2

• Chapter 6, Methods

• Chapter 7, Arrays

• Chapter 8, Files

present Visual Basic programming fundamentals (data types, operators, control state-
ments, methods, arrays and files). These chapters should be covered in order. Chapter 7
introduces exception handling with an example that demonstrates accessing an element
outside an array’s bounds.

Object-Oriented Programming
The chapters in this module of the book:

• Chapter 9, Object-Oriented Programming: Classes and Objects

• Chapter 10, Object-Oriented Programming: Inheritance and Polymorphism

• Chapter 11, Introduction to LINQ

• Chapter 16, Exception Handling: A Deeper Look

• Chapter 30, ATM Case Study, Part 1: Object-Oriented Design with the UML

• Chapter 31, ATM Case Study, Part 2: Implementing an Object-Oriented Design

discuss object-oriented programming, including classes, objects, inheritance, polymorphism,
interfaces and exception handling. Chapter 11, Introduction to LINQ, introduces
Microsoft’s Language Integrated Query (LINQ) technology, which provides a uniform syn-
tax for manipulating data from various data sources, such as arrays and, as you’ll see in later
chapters, collections, XML and databases. This chapter can be deferred, but it’s required for
many of the later chapters starting with Chapter 12, Databases and LINQ. Online
Chapters 30–31 present an optional object-oriented design and implementation case study

xxiv Preface

that requires the Visual Basic and object-oriented programming concepts presented in
Chapters 3–7 and 9–10.

Windows Forms Graphical User Interfaces (GUIs), Graphics and Multimedia
There are now three GUI technologies in Windows—Windows Forms (which is a legacy
technology), Windows 8 UI (available only on Windows 8) and Windows Presentation
Foundation (WPF). We surveyed instructors teaching Visual Basic and they still prefer Win-
dows Forms for their classes, so Windows Forms GUI is integrated throughout most of the
book. Chapter 14, Windows Forms GUI: A Deeper Look, covers additional Windows Forms
GUI controls and Chapter 15, Graphics and Multimedia, introduces graphics and multime-
dia. For those who wish to present or study Microsoft’s more recent GUI, graphics and mul-
timedia technologies, we provide online introductions to Windows 8 UI, graphics and
multimedia (online Chapters 20–21) and WPF GUI, graphics and multimedia (online
Chapters 27–28).

Strings and Files
We introduce Strings beginning in Chapter 3 and use them throughout the book. We in-
troduce files beginning in Chapter 8. Online Chapter 17, Strings and Characters: A Deep-
er Look, investigates Strings in more depth, and online Chapter 18, Files and Streams:
A Deeper Look, discusses files in more depth.

Databases and an Introduction to Web App Development
Chapter 12, Databases and LINQ, introduces database app development using the
ADO.NET Entity Framework and LINQ to Entities. The chapter’s examples require Vi-
sual Basic, object-oriented programming and Windows Forms concepts presented in
Chapters 3–11. The final example in Chapter 13, Web App Development with ASP.NET
requires the LINQ and database techniques presented in Chapter 12.

Extensible Markup Language (XML)
Online Chapter 19, XML and LINQ to XML, introduces XML, which is used in several lat-
er chapters. The first few sections of this chapter are required to understand the XAML
markup that’s used to build Windows 8 GUI, graphics and multimedia apps (Chapters 20–
21), Windows Phone 8 apps (Chapter 22) and WPF GUI, graphics and multimedia apps
(Chapters 27–28). The remainder of the chapter discusses LINQ to XML, which allows you
to manipulate XML using LINQ syntax. These capabilities are used in Chapters 25 and 26.

Windows 8 UI, Graphics and Multimedia; Windows Phone
The online chapters in this module of the book:

• Chapter 20, Windows 8 UI

• Chapter 21, Windows 8 Graphics and Multimedia

• Chapter 22, Windows Phone 8 Case Study

present Windows 8 UI, graphics and multimedia, and Windows Phone 8 app develop-
ment. These chapters can be used only on computers running Windows 8—they depend
on event-handling concepts that are presented throughout the early chapters and the in-
troduction to XML at the beginning of online Chapter 19 (see Section 19.1 for details).
Developing a Windows Phone 8 app is similar to developing a Windows 8 UI app.

Teaching Approach xxv

Asynchronous Programming
Online Chapter 23, Introduction to Concurrency: Async and Await, demonstrates
.NET’s and Visual Basic’s new simplified asynchronous programming capabilities. These
are commonly used in Web app and Web service development among many other uses.

Web App Development and Web Smervices
The chapters in this module of the book:

• Chapter 24, Web App Development with ASP.NET: A Deeper Look

• Chapter 25, Web Services

• Chapter 26, Building a Windows Azure™ Cloud Computing App

continue our discussion of Web app development from Chapter 13 and introduce web
services, including a case study on cloud computing with Windows Azure. Online
Chapters 25 and 26 depend on the LINQ to XML discussion in Chapter 19.

Windows Presentation Foundation (WPF) GUI, Graphics and Multimedia
The chapters in this module of the book

• Chapter 27, Windows Presentation Foundation (WPF) GUI

• Chapter 28, WPF Graphics and Multimedia

discuss Windows Presentation Foundation GUI, graphics and multimedia. These chap-
ters can be used on computers running Windows 7 or Windows 8 and depend on event-
handling concepts that are presented throughout the early chapters and the introduction
to XML at the beginning of online Chapter 19.

Teaching Approach
Visual Basic 2012 How to Program contains a rich collection of examples. We concentrate
on building good software and stress program clarity.

Live-Code Approach. The book is loaded with “live-code” examples. Most new concepts
are presented in the context of complete working Visual Basic apps, followed by one or
more executions showing program inputs and outputs. In the few cases where we show a
code snippet, to ensure correctness we first tested it in a complete working program then
copied the code from the program and pasted it into the book.

Syntax Shading. For readability, we syntax shade the code, similar to the way most inte-
grated-development environments and code editors syntax color code. Our syntax-shad-
ing conventions are:

Code Highlighting. We place light blue rectangles around each program’s key code.

Using Fonts for Emphasis. We place the key terms and the index’s page reference for each
defining occurrence in bold blue text for easy reference. We emphasize on-screen compo-

comments appear like this
keywords appear like this
constants and literal values appear like this
all other code appears in black

xxvi Preface

nents in the bold Helvetica font (for example, the File menu) and Visual Basic program text
in the Lucida font (for example, Dim count As Integer = 5).

Objectives. The opening quotes are followed by a list of chapter objectives.

Illustrations/Figures. Abundant tables, line drawings, UML diagrams, programs and pro-
gram outputs are included.

Programming Tips. We include programming tips to help you focus on important as-
pects of program development. These tips and practices represent the best we’ve gleaned
from a combined seven decades of programming and teaching experience.

Summary Bullets. We present a section-by-section, bullet-list summary of each chapter.

Terminology. We include an alphabetized list of the important terms defined in each chap-
ter with the page number of each term’s defining occurrence for easy reference.

Self-Review Exercises and Answers. Extensive self-review exercises and answers are includ-
ed for self-study.

Exercises. Each chapter concludes with additional exercises including:

• simple recall of important terminology and concepts

• What’s wrong with this code?

Good Programming Practice
The Good Programming Practices call attention to techniques that will help you pro-
duce programs that are clearer, more understandable and more maintainable.

Common Programming Error
Pointing out these Common Programming Errors reduces the likelihood that you’ll
make them.

Error-Prevention Tip
These tips contain suggestions for exposing and removing bugs from your programs; many
describe aspects of Visual Basic that prevent bugs from getting into programs.

Performance Tip
These tips highlight opportunities for making your programs run faster or minimizing the
amount of memory that they occupy.

Portability Tip
The Portability Tips help you write code that will run on a variety of platforms.

Software Engineering Observation
The Software Engineering Observations highlight architectural and design issues that
affect the construction of software systems, especially large-scale systems.

Look-and-Feel Observation
These observations help you design attractive, user-friendly graphical user interfaces that
conform to industry norms.

Software Included with Visual Basic 2012 How to Program xxvii

• What does this code do?

• Using the Debugger

• writing individual statements and small portions of methods and classes

• writing complete methods, classes and programs

• major projects.

Check out our Programming Projects Resource Center for lots of additional exercise and
project possibilities (www.deitel.com/ProgrammingProjects/).

Index. We’ve included an extensive index for reference. Defining occurrences of key terms
in the index are highlighted with a bold blue page number.

Software Included with Visual Basic 2012 How to Program
This book includes the Microsoft® Visual Studio® Express 2012 for Windows Desktop
DVD, which runs on Windows 7 and 8. See the Before You Begin section that follows this
preface for information on downloading the other Visual Studio Express 2012 Editions
that we use in this book.

Instructor Supplements
The following supplements are available to qualified instructors only through Pearson
Education’s Instructor Resource Center (www.pearsonhighered.com/irc):

• Solutions Manual contains solutions to most of the end-of-chapter exercises. Please
do not write to us requesting access to the Pearson Instructor’s Resource Center.
Access is restricted to college instructors teaching from the book. Instructors may
obtain access only through their Pearson representatives. If you’re not a registered
faculty member, contact your Pearson representative or visit www.pearsonhigh-

ered.com/educator/replocator/. Exercise Solutions are not provided for “proj-
ect” exercises. Check out our Programming Projects Resource Center for lots of
additional exercise and project possibilities:

• Test Item File of multiple-choice questions (approximately two per book section)

• Customizable PowerPoint® slides containing all the code and figures in the text,
plus bulleted items that summarize the key points in the text.

Microsoft DreamSpark™
Professional Developer and Designer Tools for Students
Microsoft provides many of its professional developer tools to students for free via a pro-
gram called DreamSpark (www.dreamspark.com). See the website for details on verifying
your student status so you take advantage of this program.

Acknowledgments
We’d like to thank Barbara Deitel of Deitel & Associates, Inc. for long hours devoted to
this project. She painstakingly researched the new capabilities of Visual Basic 2012, .NET
4.5, Windows 8, Windows Phone 8, Windows Azure and other key topics.

www.deitel.com/ProgrammingProjects

www.deitel.com/ProgrammingProjects/
www.pearsonhighered.com/irc
www.pearsonhighered.com/educator/replocator/
www.pearsonhighered.com/educator/replocator/
www.deitel.com/ProgrammingProjects
www.dreamspark.com

xxviii Preface

We’re fortunate to have worked with the dedicated team of publishing professionals
at Pearson Higher Education. We appreciate the guidance, wisdom and energy of Tracy
Johnson, Executive Editor, Computer Science. Carole Snyder did an extraordinary job
recruiting the book’s reviewers and managing the review process. Bob Engelhardt did a
wonderful job bringing the book to publication.

Reviewers
We wish to acknowledge the efforts of our reviewers. The book was scrutinized by aca-
demics teaching Visual Basic courses and industry experts. They provided countless sug-
gestions for improving the presentation. Any remaining flaws in the book are our own.

Sixth edition reviewers: Wu He (Old Dominion University), Ken Tucker (Microsoft
MVP and Software Developer, Sea World), José Antonio González Seco (Parliament of
Andalusia) and Jim Wooley (Slalom Consulting, Microsoft Visual Basic MVP, Author of
LINQ in Action).

Other recent edition reviewers: Douglas B. Bock (MCSD.NET, Southern Illinois
University Edwardsville), Dan Crevier (Microsoft), Amit K. Ghosh (University of Texas
at El Paso), Marcelo Guerra Hahn (Microsoft), Kim Hamilton (Software Design Engineer
at Microsoft and co-author of Learning UML 2.0), Huanhui Hu (Microsoft Corporation),
Vitek Karas (Microsoft), Narges Kasiri (Oklahoma State University), James Edward
Keysor (Florida Institute of Technology), Helena Kotas (Microsoft), Charles Liu (Univer-
sity of Texas at San Antonio), Chris Lovett (Software Architect at Microsoft), Bashar Lulu
(INETA Country Leader, Arabian Gulf), John McIlhinney (Spatial Intelligence; Micro-
soft MVP 2008 Visual Developer, Visual Basic), Ged Mead (Microsoft Visual Basic MVP,
DevCity.net), Anand Mukundan (Architect, Polaris Software Lab Ltd.), Dr. Hamid R.
Nemati (The University of North Carolina at Greensboro), Timothy Ng (Microsoft),
Akira Onishi (Microsoft), Jeffrey P. Scott (Blackhawk Technical College), Joe Stagner
(Senior Program Manager, Developer Tools & Platforms), Erick Thompson (Microsoft)
and Jesús Ubaldo Quevedo-Torrero (University of Wisconsin–Parkside, Department of
Computer Science)

As you read the book, we’d sincerely appreciate your comments, criticisms and sug-
gestions for improving the text. Please address all correspondence to:

We’ll respond promptly. We really enjoyed writing this book—we hope you enjoy reading it!

Paul Deitel
Harvey Deitel

About the Authors
Paul Deitel, CEO and Chief Technical Officer of Deitel & Associates, Inc., is a graduate
of MIT, where he studied Information Technology. Through Deitel & Associates, Inc.,
he has delivered hundreds of programming courses to industry clients, including Cisco,
IBM, Siemens, Sun Microsystems, Dell, Fidelity, NASA at the Kennedy Space Center, the
National Severe Storm Laboratory, White Sands Missile Range, Rogue Wave Software,
Boeing, SunGard Higher Education, Nortel Networks, Puma, iRobot, Invensys and many

deitel@deitel.com

Deitel® Dive-Into® Series Programming Languages Training xxix

more. He and his co-author, Dr. Harvey M. Deitel, are the world’s best-selling program-
ming-language textbook/professional book/video authors.

Paul was named as a Microsoft® Most Valuable
Professional (MVP) for C# in 2012. According to
Microsoft, “the Microsoft MVP Award is an annual
award that recognizes exceptional technology commu-
nity leaders worldwide who actively share their high
quality, real world expertise with users and Micro-
soft.”

Dr. Harvey Deitel, Chairman and Chief Strategy Officer of Deitel & Associates, Inc.,
has over 50 years of experience in computing. Dr. Deitel earned B.S. and M.S. degrees in
Electrical Engineering from MIT and a Ph.D. in Mathematics from Boston University.
He has extensive college teaching experience, including earning tenure and serving as the
Chairman of the Computer Science Department at Boston College before founding
Deitel & Associates, Inc., in 1991 with his son, Paul Deitel. The Deitels’ publications have
earned international recognition, with translations published in Chinese, Korean, Japa-
nese, German, Russian, Spanish, French, Polish, Italian, Portuguese, Greek, Urdu and
Turkish. Dr. Deitel has delivered hundreds of programming courses to corporate, aca-
demic, government and military clients.

Deitel® Dive-Into® Series Programming Languages Training
Deitel & Associates, Inc., founded by Paul Deitel and Harvey Deitel, is an internationally
recognized authoring and corporate training organization, specializing in computer pro-
gramming languages, object technology, mobile app development and Internet and web
software technology. The company’s training clients include many of the world’s largest
companies, government agencies, branches of the military, and academic institutions. The
company offers instructor-led training courses delivered at client sites worldwide on major
programming languages and platforms, including Visual Basic®, Visual C#®, Visual
C++®, C++, C, Java™, XML®, Python®, object technology, Internet and web program-
ming, Android app development, Objective-C and iPhone app development and a grow-
ing list of additional programming and software development courses.

Through its 37-year publishing partnership with Prentice Hall/Pearson, Deitel &
Associates, Inc., publishes leading-edge programming college textbooks, professional
books and LiveLessons video courses. Deitel & Associates, Inc. and the authors can be
reached at:

To learn more about Deitel’s Dive-Into® Series Corporate Training curriculum, visit:

To request a proposal for worldwide on-site, instructor-led training at your organization,
e-mail deitel@deitel.com.

Individuals wishing to purchase Deitel books and LiveLessons video training can do so
through www.deitel.com. Bulk orders by corporations, the government, the military and
academic institutions should be placed directly with Pearson. For more information, visit

deitel@deitel.com

www.deitel.com/training

www.informit.com/store/sales.aspx

2012 C# MVP

www.deitel.com/training
www.informit.com/store/sales.aspx
www.deitel.com

This page intentionally left blank

This section contains information you should review before using this book and instruc-
tions to ensure that your computer is set up properly for use with this book.

Font and Naming Conventions
We use fonts to distinguish between features, such as menu names, menu items, and other
elements that appear in the program-development environment. Our convention is to em-
phasize IDE features in a sans-serif bold Helvetica font (for example, Properties window)
and to emphasize program text in a sans-serif Lucida font (for example, bool x = true).

Software
This textbook uses the following software:

• Microsoft Visual Studio Express 2012 for Windows Desktop

• Microsoft Visual Studio Express 2012 for Web (Chapters 13 and 24–26)

• Microsoft Visual Studio Express 2012 for Windows 8 (Chapters 20–21)

• Microsoft Visual Studio Express 2012 for Windows Phone (Chapter 22)

Each is available free for download at www.microsoft.com/express. The Express Editions
are fully functional, and there’s no time limit for using the software.

Hardware and Software Requirements for the Visual Studio 2012 Express Editions
To install and run the Visual Studio 2012 Express Editions, ensure that your system meets
the minimum requirements specified at:

Microsoft Visual Studio Express 2012 for Windows 8 works only on Windows 8.

Viewing File Extensions
Several screenshots in Visual Basic 2012 How to Program display file names with file-name
extensions (e.g., .txt, .cs or .png). Your system’s settings may need to be adjusted to display
file-name extensions. Follow these steps to configure your Windows 7 computer:

1. In the Start menu, select All Programs, then Accessories, then Windows Explorer.

2. Press Alt to display the menu bar, then select Folder Options… from Windows Ex-
plorer’s Tools menu.

3. In the dialog that appears, select the View tab.

4. In the Advanced settings: pane, uncheck the box to the left of the text Hide ex-
tensions for known file types. [Note: If this item is already unchecked, no action
needs to be taken.]

5. Click OK to apply the setting and close the dialog.

www.microsoft.com/visualstudio/eng/products/compatibility

Before You
Begin

www.microsoft.com/express
www.microsoft.com/visualstudio/eng/products/compatibility

xxxii Before You Begin

Follow these steps to configure your Windows 8 computer:

1. On the Start screen, click the Desktop tile to switch to the desktop.

2. On the task bar, click the File Explorer icon to open the File Explorer.

3. Click the View tab, then ensure that the File name extensions checkbox is
checked.

Obtaining the Code Examples
The examples for Visual Basic 2012 How to Program are available for download at

If you’re not already registered at our website, go to www.deitel.com and click the Register
link below our logo in the upper-left corner of the page. Fill in your information. There’s
no charge to register, and we do not share your information with anyone. We send you only
account-management e-mails unless you register separately for our free e-mail newsletter at
www.deitel.com/newsletter/subscribe.html. You must enter a valid e-mail address. After
registering, you’ll receive a confirmation e-mail with your verification code. Click the link
in the confirmation email to go to www.deitel.com and sign in.

Next, go to www.deitel.com/books/vb2012htp/. Click the Examples link to down-
load the ZIP archive file to your computer. Write down the location where you save the
file—most browsers will save the file into your Downloads folder.

Throughout the book, steps that require you to access our example code on your com-
puter assume that you’ve extracted the examples from the ZIP file and placed them at
C:\Examples. You can extract them anywhere you like, but if you choose a different loca-
tion, you’ll need to update our steps accordingly. You can extract the ZIP archive file’s
contents using tools such as WinZip (www.winzip.com), 7-zip (www.7-zip.org) or the
built-in capabilities of Windows Explorer on Window 7 or File Explorer on Windows 8.

Visual Studio Theme
Visual Studio 2012 has a Dark theme (the default) and a Light theme. The screen captures
shown in this book use the Light theme, which is more readable in print. If you’d like to
switch to the Light theme, in the TOOLS menu, select Options… to display the Options di-
alog. In the left column, select Environment, then select Light under Color theme. Keep the
Options dialog open for the next step.

Displaying Line Numbers and Configuring Tabs
Next, you’ll change the settings so that your code matches that of this book. To have the
IDE display line numbers, expand the Text Editor node in the left pane then select All Lan-
guages. On the right, check the Line numbers checkbox. Next, expand the Visual Basic
node in the left pane and select Tabs. Make sure that the option Insert spaces is selected.
Enter 3 for both the Tab size and Indent size fields. Any new code you add will now use
three spaces for each level of indentation. Click OK to save your settings.

Miscellaneous Notes
• Some people like to change the workspace layout in the development tools. You

can return the tools to their default layouts by selecting Window > Reset Window
Layout.

www.deitel.com/books/vb2012htp/

www.deitel.com/books/vb2012htp/
www.deitel.com
www.deitel.com/newsletter/subscribe.html
www.deitel.com
www.deitel.com/books/vb2012htp/
www.winzip.com
http://www.7-zip.org

Before You Begin xxxiii

• Many of the menu items we use in the book have corresponding icons shown
with each menu item in the menus. Many of the icons also appear on one of the
toolbars at the top of the development environment. As you become familiar with
these icons, you can use the toolbars to help speed up your development time.
Similarly, many of the menu items have keyboard shortcuts (also shown with
each menu item in the menus) for accessing commands quickly.

You are now ready to begin your Visual Basic studies with Visual Basic 2012 How to
Program. We hope you enjoy the book!

This page intentionally left blank

1Introduction to Computers,
the Internet and Visual Basic

The chief merit of language is
clearness.
——Galen

Our life is frittered away with
detail. . . . Simplify, simplify.
—Henry David Thoreau

Man is still the most
extraordinary computer of all.
—John F. Kennedy

O b j e c t i v e s
In this chapter you’ll learn:

■ Basic hardware, software and
data concepts.

■ The different types of
programming languages.

■ The history of the Visual
Basic programming language
and the Windows operating
system.

■ What cloud computing with
Windows Azure™ is.

■ Basics of object technology.

■ The history of the Internet
and the World Wide Web.

■ The parts that Windows,
.NET, Visual Studio 2012 and
Visual Basic 2012 play in the
Visual Basic ecosystem.

■ To test-drive a Visual Basic
2012 drawing app.

1.3 Data Hierarchy 3

day’s computers and embedded systems, such as smartphones, appliances, game control-
lers, cable set-top boxes and automobiles.

Moore’s Law and related observations apply especially to

• the amount of memory that computers have for running programs and processing
data

• the amount of secondary storage (such as hard disk storage) they have to hold
programs and data over longer periods of time

• their processor speeds—the speeds at which computers execute their programs (i.e.,
do their work).

Similar growth has occurred in the communications field, in which costs have plum-
meted as enormous demand for communications bandwidth (i.e., information-carrying
capacity) has attracted intense competition. We know of no other fields in which tech-
nology improves so quickly and costs fall so rapidly. Such phenomenal improvement is
truly fostering the Information Revolution and creating significant career opportunities.

1.3 Data Hierarchy
Data items processed by computers form a data hierarchy that becomes larger and more
complex in structure as we progress from the simplest data items (called “bits”) to richer
data items, such as characters, fields, and so on. Figure 1.1 illustrates a portion of the data
hierarchy.

Fig. 1.1 | Data hierarchy.

Tom Blue

Sally Black

Judy Green File

J u d y Field

Unicode character J

Record

Iris Orange

Randy Red

00000000 01001010

1 Bit

Judy Green

4 Chapter 1 Introduction to Computers, the Internet and Visual Basic

Bits
The smallest data item in a computer can assume the value 0 or the value 1. Such a data
item is called a bit (short for “binary digit”—a digit that can assume either of two values).
It’s remarkable that the impressive functions performed by computers involve only the
simplest manipulations of 0s and 1s—examining a bit’s value, setting a bit’s value and revers-
ing a bit’s value (from 1 to 0 or from 0 to 1). We discuss binary numbers in more detail in
Appendix C, Number Systems.

Characters
It’s tedious for people to work with data in the low-level form of bits. Instead, we prefer
to work with decimal digits (0–9), uppercase letters (A–Z), lowercase letters (a–z), and special
symbols (e.g., $, @, %, &, *, (,), –, +, ", :, ? and /). Digits, letters and special symbols are
known as characters. The computer’s character set is the set of all the characters used to
write programs and represent data items on that device. Computers process only 1s and
0s, so every character is represented as a pattern of 1s and 0s. The Unicode character set
contains characters for many of the world’s languages. Visual Basic supports several char-
acter sets, including 16-bit Unicode® characters that are composed of two bytes—each
byte is composed of eight bits. See Appendix D for more information on the ASCII
(American Standard Code for Information Interchange) character set—the popular sub-
set of Unicode that represents uppercase and lowercase letters in the English alphabet, dig-
its and some common special characters.

Fields
Just as characters are composed of bits, fields are composed of characters or bytes. A field
is a group of characters or bytes that conveys meaning. For example, a field consisting of
uppercase and lowercase letters could be used to represent a person’s name, and a field con-
sisting of decimal digits could represent a person’s age.

Records
Several related fields can be used to compose a record. In a payroll system, for example,
the record for an employee might consist of the following fields (possible types for these
fields are shown in parentheses):

• Employee identification number (a whole number)

• Name (a string of characters)

• Address (a string of characters)

• Hourly pay rate (a number with a decimal point)

• Year-to-date earnings (a number with a decimal point)

• Amount of taxes withheld (a number with a decimal point)

Thus, a record is a group of related fields. In the preceding example, all the fields belong
to the same employee. A company might have many employees and a payroll record for
each one.

Files
A file is a group of related records. [Note: More generally, a file contains arbitrary data in
arbitrary formats. In some operating systems, a file is viewed simply as a sequence of bytes—

1.4 Computer Organization 5

any organization of the bytes in a file, such as organizing the data into records, is a view
created by the programmer.] It’s not unusual for an organization to have thousands or
even millions of files, some containing billions or even trillions of characters of informa-
tion. You’ll work with files in Chapter 8.

Database
A database is a collection of data that’s organized for easy access and manipulation. The
most popular database model is the relational database in which data is stored in simple
tables. A table includes records composed of fields. For example, a table of students might
include first name, last name, major, year, student ID number and grade point average
fields. The data for each student is a record, and the individual pieces of information in
each record are the fields. You can search, sort and otherwise manipulate the data based on
its relationship to multiple tables or databases. For example, a university might use data
from the student database in combination with data from databases of courses, on-campus
housing, meal plans, etc. We discuss databases in Chapters 12–13.

Big Data
The amount of data being produced worldwide is enormous and growing explosively.
Figure 1.2 shows various common byte measurements. According to IBM, approximately
2.5 quintillion bytes (2.5 exabytes) of data are created daily and 90% of the world’s data
was created in just the past two years!1 According to an IDC study, approximately 1.8
zettabytes (equal to 1.8 trillion gigabytes) of data was used worldwide in 2011.2

1.4 Computer Organization
Regardless of differences in physical appearance, computers can be envisioned as divided
into various logical units or sections.

Input Unit
This “receiving” section obtains information (data and computer programs) from input
devices and places it at the disposal of the other units for processing. Most information is

1. www-01.ibm.com/software/data/bigdata/.

Unit Consists of Which is approximately

1 kilobyte (KB) 1024 bytes 103 (1024 bytes, exactly)

1 megabyte (MB) 1024 kilobytes 106 (1,000,000 bytes)

1 gigabyte (GB) 1024 megabytes 109 (1,000,000,000 bytes)

1 terabyte (TB) 1024 gigabytes 1012 (1,000,000,000,000 bytes)

1 petabyte (PB) 1024 terabytes 1015 (1,000,000,000,000,000 bytes)

1 exabyte (EB) 1024 petabytes 1018 (1,000,000,000,000,000,000 bytes)

1 zettabyte (ZB) 1024 exabytes 1021 (1,000,000,000,000,000,000,000 bytes)

Fig. 1.2 | Byte measurements.

2. www.emc.com/collateral/about/news/idc-emc-digital-universe-2011-infographic.pdf.

http://www-01.ibm.com/software/data/bigdata/
www.emc.com/collateral/about/news/idc-emc-digital-universe-2011-infographic.pdf

6 Chapter 1 Introduction to Computers, the Internet and Visual Basic

entered into computers through keyboards, touch screens and mouse devices. Other forms
of input include receiving voice commands, scanning images and barcodes, reading from
secondary storage devices (such as hard drives, DVD drives, Blu-ray Disc™ drives and
USB flash drives—also called “thumb drives” or “memory sticks”), receiving video from a
webcam or smartphone and having your computer receive information from the Internet
(such as when you download videos from YouTube or e-books from Amazon). Newer
forms of input include position data from GPS devices, and motion and orientation infor-
mation from accelerometers in smartphones or game controllers (such as Microsoft® Ki-
nect™, Nintendo’s Wii™ Remote and Sony’s PlayStation® Move).

Output Unit
This “shipping” section takes information that the computer has processed and places it
on various output devices to make it available for use outside the computer. Most infor-
mation that’s output from computers today is displayed on screens; printed on paper (“go-
ing green” discourages this); played as audio or video on PCs and media players (such as
Apple’s iPods) and giant screens in sports stadiums; transmitted over the Internet or used
to control other devices, such as robots, 3D printers and “intelligent” appliances.

Memory Unit
This rapid-access, relatively low-capacity “warehouse” section retains information that’s
entered through the input unit, making it immediately available for processing when need-
ed. The memory unit also retains processed information until it can be placed on output
devices by the output unit. Information in the memory unit is volatile—it’s typically lost
when the computer’s power is turned off. The memory unit is often called either memory
or primary memory—on desktop and notebook computers it commonly contains as
much as 16 GB (gigabytes).

Arithmetic and Logic Unit (ALU)
This “manufacturing” section performs calculations, such as addition, subtraction, multipli-
cation and division. It also contains the decision mechanisms that allow the computer, for ex-
ample, to compare two items from the memory unit to determine whether they’re equal. In
today’s systems, the ALU is usually implemented as part of the next logical unit, the CPU.

Central Processing Unit (CPU)
This “administrative” section supervises the operation of the other sections. The CPU tells
the input unit when information should be read into the memory unit, tells the ALU when
information from the memory unit should be used in calculations and tells the output unit
when to send information from the memory unit to certain output devices. Many of to-
day’s computers have multiple CPUs and, hence, can perform many operations simulta-
neously. A multi-core processor implements multiple CPUs on a single “microchip”—a
dual-core processor has two CPUs and a quad-core processor has four CPUs. Many of today’s
desktop computers have quad-core processors that can execute billions of instructions per
second. In this book you’ll use Microsoft’s new Async technology to write programs that
can keep CPUs running in parallel to get your computing tasks done faster.

Secondary Storage Unit
This is the long-term, high-capacity “warehousing” section. Programs or data not actively
being used by the other units normally are placed on secondary storage devices (such as

1.5 Machine Languages, Assembly Languages and High-Level Languages 7

your hard drive) until they’re again needed, possibly hours, days, months or even years lat-
er. Information on secondary storage devices is persistent—it’s preserved even when the
computer’s power is turned off. Secondary storage data takes much longer to access than
information in primary memory, but the cost per unit of secondary storage is much less
than that of primary memory. Examples of secondary storage devices include CD drives,
DVD drives and flash drives, some of which can hold up to 768 GB. Typical hard drives
on desktop and notebook computers can hold up to 2 TB. New to this edition, you’ll see
that storage in the cloud can be viewed as additional secondary storage accessible by your
Visual Basic apps.

1.5 Machine Languages, Assembly Languages and High-
Level Languages
Programmers write instructions in various programming languages (such as Visual Basic),
some directly understandable by computers and others requiring intermediate translation
steps.

Machine Languages
Any computer can directly understand only its own machine language, defined by its hard-
ware architecture. Machine languages generally consist of numbers, ultimately reduced to
1s and 0s. Such languages are cumbersome for humans, who prefer meaningful words like
“add” and “subtract” to indicate the operations to be performed, so the machine language
numeric versions of these instructions are referred to as code. The term “code” has become
more broadly used and now refers to the program instructions in all levels of programming
languages.

Assembly Languages and Assemblers
Machine language was simply too slow and tedious for programmers to work with. In-
stead, they began using English-like abbreviations to represent elementary operations.
These abbreviations form the basis of assembly languages. Translator programs called as-
semblers convert assembly-language code to machine language code quickly. Although as-
sembly-language code is clearer to humans, it’s incomprehensible to computers until
translated to machine language code.

High-Level Languages, Compilers and Interpreters
To speed the programming process even further, high-level languages were developed in
which single statements could be written to accomplish substantial tasks. High-level lan-
guages, such as Visual Basic, C#, C++, C, Objective-C and Java, allow you to write instruc-
tions that look almost like everyday English and contain commonly used mathematical
expressions. Translator programs called compilers convert high-level language code into
machine language code.

The process of compiling a large high-level language program into machine language
can take a considerable amount of computer time. Interpreter programs were developed
to execute high-level language programs directly (without the need for compilation),
although more slowly than compiled programs.

8 Chapter 1 Introduction to Computers, the Internet and Visual Basic

1.6 Object Technology
Visual Basic is an object-oriented programming language. In this section we’ll introduce
the basics of object technology.

Building software quickly, correctly and economically remains an elusive goal at a
time when demands for new and more powerful software are soaring. Objects, or more
precisely the classes objects come from, are essentially reusable software components. There
are date objects, time objects, audio objects, video objects, automobile objects, people
objects, etc. Almost any noun can be reasonably represented as a software object in terms
of attributes (such as name, color and size) and behaviors (such as calculating, moving and
communicating). Software developers have discovered that using a modular, object-ori-
ented design and implementation approach can make software-development groups much
more productive than was possible with earlier techniques—object-oriented programs are
often easier to understand, correct and modify.

The Automobile as an Object
Let’s begin with a simple analogy. Suppose you want to drive a car and make it go faster by
pressing its accelerator pedal. What must happen before you can do this? Well, before you can
drive a car, someone has to design it. A car typically begins as engineering drawings, similar
to the blueprints that describe the design of a house. These drawings include the design for
an accelerator pedal. The pedal hides from the driver the complex mechanisms that actually
make the car go faster, just as the brake pedal hides the mechanisms that slow the car, and
the steering wheel hides the mechanisms that turn the car. This enables people with little or
no knowledge of how engines, braking and steering mechanisms work to drive a car easily.

Before you can drive a car, it must be built from the engineering drawings that
describe it. A completed car has an actual accelerator pedal to make the car go faster, but
even that’s not enough—the car won’t accelerate on its own (we hope), so the driver must
press the pedal to accelerate the car.

Methods and Classes
Let’s use our car example to introduce some key object-oriented programming concepts.
Performing a task in a program requires a method. The method houses the program state-
ments that actually perform the task. It hides these statements from its user, just as a car’s
accelerator pedal hides from the driver the mechanisms of making the car go faster. In ob-
ject-oriented programming languages, we create a program unit called a class to house the
set of methods that perform the class’s tasks. For example, a class that represents a bank
account might contain one method to deposit money to an account, another to withdraw
money from an account and a third to inquire what the account’s current balance is. A class
that represents a car might contain methods for accelerating, breaking and turning. A class
is similar in concept to a car’s engineering drawings, which house the design of an accel-
erator pedal, steering wheel, and so on.

Making Objects from Classes
Just as someone has to build a car from its engineering drawings before you can actually
drive a car, you must build an object from a class before a program can perform the tasks
that the class’s methods define. The process of doing this is called instantiation. An object
is then referred to as an instance of its class.

1.6 Object Technology 9

Reuse
Just as a car’s engineering drawings can be reused many times to build many cars, you can
reuse a class many times to build many objects. Reuse of existing classes when building new
classes and programs saves time and effort. Reuse also helps you build more reliable and ef-
fective systems, because existing classes and components often have gone through extensive
testing (to locate problems), debugging (to correct those problems) and performance tuning.
Just as the notion of interchangeable parts was crucial to the Industrial Revolution, reusable
classes are crucial to the software revolution that’s been spurred by object technology.

Messages and Method Calls
When you drive a car, pressing its gas pedal sends a message to the car to perform a task—
that is, to go faster. Similarly, you send messages to an object. Each message is implemented
as a method call that tells a method of the object to perform its task. For example, a pro-
gram might call a particular bank-account object’s deposit method to increase the account’s
balance.

Attributes and Instance Variables
A car, besides having capabilities to accomplish tasks, also has attributes, such as its color,
its number of doors, the amount of gas in its tank, its current speed and its record of total
miles driven (i.e., its odometer reading). Like its capabilities, the car’s attributes are repre-
sented as part of its design in its engineering diagrams (which, for example, include an
odometer and a fuel gauge). As you drive an actual car, these attributes are carried along
with the car. Every car maintains its own attributes. For example, each car knows how
much gas is in its own gas tank, but not how much is in the tanks of other cars.

An object, similarly, has attributes that it carries along as it’s used in a program. These
attributes are specified as part of the object’s class. For example, a bank-account object has
a balance attribute that represents the amount of money in the account. Each bank-
account object knows the balance in the account it represents, but not the balances of the
other accounts in the bank. Attributes are specified by the class’s instance variables.

Encapsulation
Classes encapsulate (i.e., wrap) attributes and methods into objects—an object’s attributes
and operations are intimately related. Objects may communicate with one another, but
they’re normally not allowed to know how other objects are implemented—implementa-
tion details are hidden within the objects themselves. This information hiding, as we’ll see,
is crucial to good software engineering.

Inheritance
A new class of objects can be created quickly and conveniently by inheritance—the new
class absorbs the characteristics of an existing class, possibly customizing them and adding
unique characteristics of its own. In our car analogy, an object of class “convertible” cer-
tainly is an object of the more general class “automobile,” but more specifically, the roof can
be raised or lowered.

Software Engineering Observation 1.1
Use a building-block approach to creating your programs. Avoid reinventing the wheel—
use existing pieces wherever possible. This software reuse is a key benefit of object-oriented
programming.

